IVSWT Water Bath V2.0: Standardized model for in-vitro shock wave treatment (IVSWT)
MANUAL
IVSWT Water Bath V2.0
Standardized Model for
In-Vitro Shock Wave Treatment (IVSWT)
Manual: IVSWT Water Bath V2.0
1
Introduction
by Johannes Holfeld, MD
Innsbruck Medical University, Austria, October 2010
The number of in-vitro experiments in shock wave science increases continuously. This fact
reflects how important basic research findings on the cellular and sub-cellular level are for
the future progress of shock wave therapy. In some very emerging fields better mechanistic
understandings may be prerequisite for translation into clinical use or will at least support the
application of already well established indications.
Today’s knowledge of shock wave effects on cell cultures includes the increase of
proliferation, alteration of cell membrane receptors, increase and acceleration of cell
differentiation, release of several kinds of growth factors and chemo-attractants as well as
increased cell migration.
Besides reduction of animal experiments and cost-effectiveness, the biggest advantage of
In-Vitro Shock Wave Treatment (IVSWT) may be the possibility of studying the specific
behaviour of a certain cell type. In shock wave mediated tissue regeneration most likely all
cells of the treated tissue are involved, even systemic effects are discussed. Nevertheless,
each cell type plays a specific role and has its own intrinsic function. IVSWT enables us to
detect this particular functions and may thereby give us better understanding of the complex
underlying processes.
Some more applications of IVSWT are discussed. For example it may in future be used to
enhance cell proliferation for (stem-) cell treatment purposes.
Distracting physical effects in most in-vitro models
Literature reveals various methods of applying shock waves onto cell cultures. In general all
existing models are focused on how to apply shock waves onto cells. For example it is done
by direct coupling to a sample with ultrasound transmission gel, coupling through water tanks
or even through pork skin.
This fact leads to the problem that it is highly
difficult to compare results as physical
conditions of cell stimulation are quite
different between the models. As no
standardized model for in vitro trials exists all
the different models have their respective
advantage but are also associated with some
distracting physical effects.
Manual: IVSWT Water Bath V2.0
2
However, the question is not how to apply shock waves onto cells. This can easily be done
by all the mentioned methods.
But: What happens to the waves after passing a cell culture? The main problem is that the
difference of the acoustic impedance of the cell culture medium and the ambient air is that
high that more than 99% of the shock waves get reflected (Figure 1). Due to the difference in
acoustic impedance of the two media the waves are not only reflected but also a phase-shift
of 180° occurs resulting in strong tensile forces to the cells (Figure 2A-D).
Figure 2A-D: Phase-shift of waves at water to air passage.
The acoustic impedance is defined as the product of the density of a material and its sound
velocity Z=! x c. For water the acoustic impedance is Z
Water
= 1’440’000 Ns/m
3
, for air it’s only
420 Ns/m
3
. The large difference of these two values results in reflection and phase shift of
shock waves. The phase shift turns a positive pressure pulse into a tensile wave.
Even if this tensile force is not harmful to the cells it interferes with the idea of mimicking in
vivo shock wave effects in vitro. In vivo these tensile forces do not occur due to the large
body structures.
If the water to air transit is very close to the cells the back running waves can disturb the
incoming ones. This may cause interference. Two types of interference are known.
Constructive interference means that both waves are added thereby resulting in a doubled
amplitude (Figure 3A). Destructive interference occurs if waves meet just opponently. It
causes abolishment of waves. (Figure 3B).
Figure 3A+3B: Interference between back running and incoming waves may occur.
Therefore IVSWT needs a model that enables shock waves to propagate after passing the
cell culture. This can be done by putting cells into a water bath.
Manual: IVSWT Water Bath V2.0
3
The prerequisites for in vitro experiments can be defined as:
– Probes e.g. cell cultures can be placed in the center of the shock wave path at the
region of highest pressure of the shock waves as well as in front or behind this area.
– Vials or other cell culture containers have to consist if material with an acoustic
impedance comparable to water. Most plastics fulfill these requirements while glass
or metal do not.
– Shock waves have to be effectively coupled to the probes without any air gap or air
bubbles in the shock wave path.
– No water to air transitions close to the probes shall occur to avoid reflections and
large tensile forces.
Suitable materials for vials from an acoustic point of view are PE (Z=1’760’000 Ns/m
3
), soft-
rubber (Z=1’270’000 Ns/m
3
), polyamid (Z=1’960’000 Ns/m
3
). Less ideal is PVC (3’270’000
Ns/m
3
) plexiglas (Z=3’260’000 Ns/m
3
) delrin (3’450’000 Ns/m
3
) polycarbonate (2’770’000
Ns/m
3
) or polypropylene (2’400’000 Ns/m
3
). Hard materials such as glass or metal shall not
be used.
IVSWT water bath
Because of the above mentioned concerns we asked an engineer to build a water bath
avoiding these problems. Basically this in vitro water bath consists of a plexiglas built
container with a membrane to connect every kind of shock wave applicator. For coupling
between this membrane and the applicator ultrasound transmission gel has to be used. The
water bath is filled with degassed water to avoid cavitation that would occur if gas is soluted
in the water. A heater at the bottom with a temperature sensor connected to a control unit
enables to regulate temperature for imitation of in vivo conditions and to avoid cell cultures to
cool down. Temperature can be held stable at 37 degrees centigrade as it is done in an
incubator. A holder for the cell samples allows putting in any kind of culture flasks or tubes.
Of course samples need to be completely filled with culture medium as air bubbles would
block shock waves! A wedge shaped absorber at the back wall of the bath destructs waves
in order not to get reflected and run back. This is to avoid reflection and its above mentioned
distracting effects.
A further advantage compared to other IVSWT models is the possibility of varying the
distance between the applicator and the culture flasks. Findings of our group and others who
use this model clearly show that every cell type reacts very specifically to different treatment
parameters. Moreover, defining the distance between the waves source and the sample is
crucial as it enables us to control the cells to be at a specific position in relation to the focus
of the applicator.
Manual: IVSWT Water Bath V2.0
4
Besides our lab several other research groups already use this model and some of them
presented their first results at the ISMST Basic Research Meeting in January 2010. The
feedback was quite positive. Therefore this model seems to be a proper tool for IVSWT
avoiding most of physical limitations in the experiments.
Conducting first experiments
According to our experience with cardiomyocytes, endothelial cells, fibroblasts and stem cells
every cell type needs its specific treatment parameters. We therefore strongly recommend to
perform a pilot trial for assessment of the adequate treatment parameters before conducting
your planned experiments. This pilot trial needs to include different distances between the
shock wave applicator and the sample as well as different energy flux densities. Also the
most appropriate number of pulses should be established. The frequency of applying shock
waves is still a matter of concern even in vivo. Hopefully, current investigation will give us
more information about this topic.
Please note: To define the distance between your shock wave source and your sample can
be very tricky. To work accurately you need to know the exact position of the source (e.g. in
electro-hydraulic systems this means the tips of the electrode).
Moreover, you will need to find a position for your applicator that does not vary this distance
every time by different indentation of the membrane!
References:
1. J. Holfeld: IVSWT – In Vitro Shock Wave Treatment.
ISMST Newsletter 2010, No. 1 (available at www.ismst.com)
2. J. Holfeld J: Rationale for In Vitro Shock Wave Trails.
1
st
ISMST Basic Research Meeting, Vienna, Austria 2010
Scientific requests to:
Johannes Holfeld, MD
Department of Cardiac Surgery
Innsbruck Medical University, Austria – Europe
mailto: johannes.holfeld@uki.at
Supplier contact:
Johann Hohenegger – Technical Products
Am Kanal 2b
2801 Katzelsdorf, Austria – Europe
mailto: office@ing-hohenegger.at
Tel: +43 (0) 2622 78257 ” Fax: +43 (0) 2622 33242
Manual: IVSWT Water Bath V2.0
5
Manual: IVSWT Water Bath V2.0
6
Manual IVSWT Water Bath V2.0
The purpose of this model is to achieve standardization in IVSWT with respect to:
–
direct sonic pulse and reflected parts of the shock wave,
–
variable focal distance,
–
temperature, and
–
reproducibility.
1.1. Overview:
Picture 1
Manual: IVSWT Water Bath V2.0
7
1.2. Sample holder
Insert the rod like shown in picture 1 into the fitting behind the absorber. Mount the stand by
using the supplied screw and hex key for tightening.
Picture 2
There are two ways of using the holder and talon clamps depending on the size of your
sample container and whether it is necessary to adjust it vertically (see pictures 3A and 3B).
The goal is to position the sample at the level of the leading line inset on both sides of the
water bath (see white arrows in the pictures below!).
Picture 3A
Picture 3B
The sample container needs to be completely filled with culture medium as air bubbles would
block shock waves!
Manual: IVSWT Water Bath V2.0
8
1.3. Temperature control
Picture 4A shows the UT100 temperature control unit. Position its temperature sensor into
the holder at the left back corner of the water bath as shown in picture 4B.
Picture 4A
Picture 4B
In its original condition, the UT100 temperature control unit is programmed to establish and
maintain a water temperature between 36.5 and 37° C.
Please refer to the UT100 manual if any other specific temperature is required.
The operating manual for the UT100 can be downloaded as a PDF form from the
manufacturer’s website:
https://www.produktinfo.conrad.com/
1.4. Water
Connect the heater as shown in picture 5; the electricity connectors may be arranged as
desired.
Picture 5
Fill in approximately 3,200 ml of degassed tap water into the bath. Use degassed water only
to avoid cavitation! The water should reach the neck of your cell culture container.
Manual: IVSWT Water Bath V2.0
9
It is recommended to use pre-heated water as heating within the bath is very time
consuming. If it is not possible to use pre-heated water, the heating time required to reach
the preset temperature can be calculated as follows:
Example:
Desired temperature:
37°C
– filling temperature:
12°C
= difference:
25°C
heating time: 25 x 3 = 75 minutes
In other words, the heater raises the water temperature by about 1° C every 3 minutes until
the preset temperature is reached.
1.5. Coupling the shock wave applicator
Picture 6
The leading lines inset on both sides of the water bath help you to see the level of your
waves source. It will be necessary to position your cell culture container on the same level.
When holding your shock wave applicator onto the membrane you need to use ultrasound
transmission gel for coupling!
Moreover, it is crucial to find a position that does not vary the distance between the shock
waves source and your cell culture container by different indentation of the membrane.
1.6. Dismantling the test equipment
Emptying
Use the 125 cm drain hose with the snap coupling to empty the water bath. Place the free
end of the hose into a container placed on the floor underneath the test equipment.
WARNING: Draining starts immediately when the snap coupling is inserted into the nozzle
on the back of the water bath.
Care & cleaning
Only use soft cloth to dry the water bath! After every use, wipe all surfaces using the cleaning
and preserving liquid with the microfiber cloth provided.
Manual: IVSWT Water Bath V2.0
10
1.7. Membrane change
Picture 7A-D
For changing the membrane take the yellow holding ring out of the water bath. Pull off the old
membrane as shown in picture 7A and replace it by the new one. Then grease the circular
opening of the water bath with any kind of commercial lubricant (e.g. Vaseline). Now insert
the yellow holding ring with your new membrane.
1.8. Scope of delivery
1 IVSWT water bath V2.0
1 Temperature control unit UT100
1 Power cable
1 Membrane holding ring (yellow)
2 Coupling membranes
1 10mm rod and screw for fixation
1 3mm hex key
2 Talon clamps
1 4-Finger clamp
1 Niro-Achse 10 mm
1 Drain hose 125 cm
1 Manual IVSWT water bath V2.0
1 Manual temperature control unit UT100
1 Manual electricity transformer
1 Cleaning fluid
1 Microfiber cloth
Manual: IVSWT Water Bath V2.0
11
1.10. Supplier
Johann Hohenegger – Technical Products
Am Kanal 2b, 2801 Katzelsdorf, Austria ” office@ing-hohenegger.at
T: +43 (0) 2622 78257 ” F: +43 (0) 2622 33242 ” Mob.: +43 (0) 664 31 11 525
Wr. Neustadt Tax Office ” ID: ATU56946817
Bankers: Sparkasse Wiener Neustadt
Sort code: 20267, account: 00601002397
BIC-Swift: winsatwn “IBAN: at522026700601002397