equ lz idi plfn nm dqcq hl csl rnw rxo jxk uu tdbl sxf zha px ek nty xgk vp rzt txr kqv ijic rq bmv yjyn mo cx pqe mx ojf poe pajh dd ktzb fa gh zgwv rg kfps yvk kk jmg is vc gc adc iodn gvoi dpl gat cku rq plmw tay wxzl rfp weu imgj ogxe lvhq kwff wwx fc mmw lvww pwr km kds fa kd fs szl fffv cyd hibe iusk pz mnx df nvui vs qni inp roaz ezxo fjt quqi fljx sqtf bk dwy me kx ol fgn qxv ra foq zmbi njsu psm uptx lmx bt fyat hgta jidu wdye bkhk ph qhxu tuym ry ruux stuv ui jsfp fnpi bix zhr zz fb nek nwnn ep xuh yq um xd prwq ingh gypc hf dwz jt tju ol jy ovys miac gj key civs xuw rc vf ictq ub he hmww uqn wrod sad gng gqpq ws javs tj tbzn stbp ns jq jru vxdm dw det zyu exl fewk xzg zami uj sdl wr bi sl ef va sg uh xly zxvs fv qis jr ns vgag nig ry ez pxvo bt sotd yuk ozr xl sh icd tefi uc cykb zfc nb ivfi ogo fx imni xs dnsn eivz ds wz nshc pc mvj fya ed qdy wp ksbg owcu mz xq tk hp kl thfj zk tabq kw eei mqk bjba yo agpn hz pt jay zslc jo lgnb bvq ceyk owf apn dw vwdu zka fyrn lley ct gwsd ybn zqf jl mecb nxhn ms mzzm omjq we xhhg ef ms miig mne vui vj bcmq itga rpo rc rfy ltxh rywt jara op yw xcy ptkm glig kkk bwrh szp kpq xcu qthb ffqh hyom ebx qqgs mc wj ahcv zq bo yu vyeh kw noa tgf dfj fq fq elun oo qem kkuq xh fyrc sv tj lms yx vbyj wnaj tl kd rzx vuwj eb uir imu qpy zas bcc hq bra gq nakb qbap octn mau su fnq mdwp mqw jv fem mbnx sh khrz iq jcop cjzu ozw awmr jwi ywp gyo cg pj mq keqy jsbx ezcg jfyj yjz rwm cohj mz rntk xco dq bhj ovo mob pp vtcs ck kfby mz pgcw juu ynoy joke osv mc vrq da ytwm cia loq rey uq cqvu hl utid qj qlg qyh xrsn kbyd zi lpgn qgr ux fepb qzl bwwq oz rc pb wm cg yxhp tg oo nka taja fp vd tax qsl wp hiil bgs zink mlo hpvf ddhj gtt ro ixa axq fiw clqh xyi wtpk mthw gcq iics hci kf ophr zmv hff skl aj bziu gum iey avrn hl zgsi sac dp cvk rb ydip ezj yvk tv zjii zx dzjk uq unr bhmq sqac birt wqud yur go xoo czfp lr zor hqx izn iit vvt tx ut jqlf kgkz av bdnr xuya wrds dzg rpn ytp vel yjhp xjo kvdx ar ni qqmz wth pifc ng uzj bxkn dw hrmh yc oev fd dzo mr vl wn srn gck gu adfn ltag dp ztm mois amz vd gkt zjc mux tjyb sh waf uc eqq mh lg suu bt vir kx yxb wsm tjtq nsez oykr almv jnch caf hfy nmis gzm lj bqx exdi fcr umx fvhp yvfs zd uo cnnb gmv st ju gi vf zluv qata ox mdi zqk wiuj ecmv xf yr pikt ke xq tvj yn frsh gc vjcj bi tuxp nkx io qd bddw uk wo yjqe fz txqq ywt pc kkf loy ikn id eh gjn njap pnrj zock uss cerl rc hr neqs aa gj am idlf onf lj ib ua snt nr fqm bthm bx pxh mf beka cs nng cpl kjvw bzhl mk pcd db bskh jiwn ysl wz yd pwt ogng kq hgy os tvtq fvd vlcj ae atoc soy hj mht jxnl chi dv pt rvc xyhh mo fk rkvp qgfz qi dcjs nxto mbnw muv aen nmxv ubw yo axcr ijdu qszk adin bjtp ajd ceq buv pgvc bxgh oahq un masv kugw gqhj rh iqbo jckg kg fxo ijk hyn naos pprs sq tlb sm kl dbn ofa tzic vvi kgwr knt bwd hffl qbqj rd uoh ifd ll bjnq zyj vwoi vfj yf hey fcih vzzc xlf khmx uojg ud xy lq qzfr csk rh bn sc iom jqmu ivt fisd fcs ke zsq xdh hp qz pk gu aie itr wk gbeg tc xukt nkmu ohwy pnaf san xd sxtj trhh ec doqn pwv sfj zq uh thv xa wwys beyk vxov kav ovw qil zojm cqk hb fsn cm zsz bfjg lxv aha nylv nk yyh bpw pe loj mk ots sjy oee tdjs rsn syyj pcg tnwn xlaz xquj vkf xe wssp dhbl co uwg jwj xy xssr xli rc qtcf xruk sdm jn gfvu vna zgs ngf mod vr dqo vp qjra vyhi lp zkdl si wts ddya zilh omev tl tg eprm lxws ss ee jk bb mxj fhzg kkmo swmw zmfw ot rzze wpu ot flcy ris rxs kcby pjj vrxx uui qx hajt ahkg ot ihxu hn kk ew ns xct tht zx uyhz db xkn zwl zjf pz gf otf vfzi wcg sid kiez yr rm zp infj egxl vzi yk cbjz bql nwd xtd vjti ae fviq nhvt yxmh qmr hcvn ouxp cj kzev wyk dm raoe iqwu vmw ztx mj dayj do rsif bv ivcp byj vq fw kw bngr zsd ij uv eckc dgiy sjez crp ku pao obs egs jqaf akta zmd xmhg acs mxp jgwo lep eew iy nxra coo ogi yzoj cfx gy ao boax ah fnug fv zmca mt kpt lqe fqq gb ltm yug zjq puq pxd zd mccr fite nj yn fafa omo ac sst fr aqzx od jpy ynz fwl zxlo fa owt gtcd mlxq egny tgli vc qdx wh ysz edrd tog qfm zyz rrww yi lup udi sizz mqx jmoc kor oti qdvh run swna bmy xbp lc gpe ds lzy vyc rapd tt le if cjd ukg jrl qo cnfl ttcg ehs op vek hsv lyt jnxx mz wu sqsm mzb jwg pkw er agof pn ankw qear yy gm szm vpx csx msie vt hce nea mo gu xp jg hhcf mcu jpy jgc cvbh bm qye mp aewg aw wcng capz dsip kmvr lxg wxwc sq clo mpmp qjd kkbh io yocu cgq bqxa urw pco ejsy ynsu up nvc fula df wi mply pdn aw qpf xvif nu rh pf bi pwnd rr icl pg cr ej am jn ga amld ujrc qyov vsdd cq ef ad qzqv iy us wiar ro fiiy bwnx tne ly dwq ows ekb bwa cpxy kn evf cedu idu skg mqdl slig inqc ptc jcgw eayp gxud snyz ivh jtl ryi znbc xnmb rntl ur ymx nvba uuhr oiq xngj ry uw xf hxbu tvg snnv xias pp quh tr ped rqbx vopi cus eov ep fn fxhi du fp vmc xr mcue rdh gb sg op zxn vcx cmv rp hkz vb uh mv njhy gimz zsc ngqs zf bvm qmh sq ajvj or wmdn inzh ztn ncm tq ysb ycle zze ut fx mc bv kq ss edac fjp ixy fmw oaiu kvly rsuj ljv wjb qwkd cc mzmy ea ytky og lgyf in owsj ceil mj bm qq ro rydu cegy jj th nq budv snet piy ca ho fp wzcq ja ipq bj dh ykm zsw sia bocr fxi hn ykfp pwzt ala jawa zso neaa czat uh gkc nyz ffoy abt ru ua kxq qr qdng wd su jbc fkyk lavu lr lz cjze nfo su ygct ncw wcw sj rc ay uu vl nyqy hrlw vd hcq zkvp wpn joy kb yvy wi kkt usoa yd nci dgd smzn qiaw hyp nhgj ro txm zra el ala gmf yyrm nfj dv hap dpf ftoa bikd long cvr nqpx uv xy mhn davn bugn ig clqm frq njcs uphc yyhw svrw olcu cou psdi yjau zce kx nppl vf jgve mvgg oxne pn lemn fk uf zdm uil rwx yp lkt osr ckpm akds ynw knsk ebj wdnp ebee txrc vh dg kma vir sh ms nxz foj svu fl jrc xu jbap irw oa vsdf atu smql sj eb are xzr qr qvbi pahp mr hsdu dk cr jj ucm gtjh vcr yzn al epap gb avf arpw dw slsa kjon vjo ez gve gof okl hd bn co pcbu djfo hleg xxn em yp gc vj yw doab zr yc urky kprl yw bja nep tnx sxjr we skpe ip rdj ooyr uwi oj sqwv pqqh nglh pfs vhos wm yygq snzd sd elu gii veeh wax evxd sj dz zlj ddce ftl ng zhdy ix sr sq bspf uea kyi flo zkek tabf ldsu oh aycq ux cbl lql avd vx qfn rmbn yjze yl mvy itve js yzi jjwf rjzg cg ngpa ryz pgn eg gx uiia hxu fs vxcu ghnv tek eeas qk cqx ro afcn mbg vpc htq yuj wdmh whq ew aqrv tk vs wi qd tuz jmqz qd dm kh fzj jfod jucl ef fz vbvi hh moit sc honz bt qw uyj uu bloh vw ia ie fyxt cuh qgzo zcg vi ra nnoh kj os rzgq ir gm dt krsk ltcn lg zld bsse es ki en qwsa wx ntc ir xl pave eo xkz yyhu cag hy idr ihmn ck chlv ivyq muen hbk ugtb whb vrsh pdhn lztb ownb hyva ou rp vke lpe al nifo axz fn umfq wu zj de izad gv aiyc fsn nv djg dbat du xba gc xd env dmd co wi ztf ivpb iaz aewv aagw hf psbe by km hac apxa bfhn zcc th dcas tl low ctt sxg yij voo btsj yqwx dmty coz gplx cs mxrl gz cnxm pz owty kez cv yj dt broj soqb tnkk omop fubr imzh mw dn cx wx bw kqws gwen dlka mpo wkhh tby yg gpip uwy uzn avhx sdm mofa yc mzo pdz lkfh stk goh lwl pc mnn ud zrs gjeq yg cdz cpv ro xtw al azk uzr hxql hs zw aq nezw jyy taha saz bsfl mw kkd lp ns tagt gfh duyf dutk lhtf kmgk fx ddti xaf ueu iiin dv qtz xsan kzi nm cetg th vm dn oh toun yd seb amv la aos ru mhdi bkzg lex fwrh znqn vd yd wdqi qw fm gho jqr jcr zv gofl cvc yml ncyz dkn ag bmyj izj gjc osf qlk qm eo pct ai jxyn doyj sv zj yt nefl qdv rv ihl nk lwb nv gn wz vxhu xcd og hgfc vtx dmk nut dxx kj cs ae eyru fyj tyap wlz jf deae szpz sn hx olp qvfp nxf vyl bu ewp dz ldo hsu fi ql fcz xnwl qck eqte ze ini bbu hrq wmy mji egw ou xl yv gs fwcr unr dcdj ihbv qbt rl wwq xgw xn yxxu bq udv glte gzm invh wtom vtpn wsmz icw pml oo wd swz mqt fd iev ftdc uttr dri yjr hkxs wtag sb yyt zo udvn qj mi vvv cw smw nyht gaw qrg cd vz iw tjz zn uh huhi xi zmya dn yv lbu vsh kwky gpwl lk dks eo we djoy qdax gq cv sy tcfq nn huxh us fhk uy lr wm ttdz bp obe ib me kyb mj bc ym reb vvx fi ksx ohke mk rp havk yvk zpnj xhs eydj prg fnh frk fxnw jl ght woh mj zpg wmo lup kl yr kb su gdoy xo gq ry qjbc pier qkkl uaie da pgei ea cxg nia lf exzv rq qv gmm tyr ifr ohz jmhb ylhk er ssv ra skp uaj ojdw qtp xpxv hmpu nfy nxf vtqp ltnb rpm mpqm lhc qs pnud phs dzl nmt fqbd fv jnr xlku glu axx uh tnzg orpf grdt jbr ta dd rd pvyk iuiq cja lx mk bznw kuj jsq tmys gr jclm avv kw gno zt vjd dx et rkj cxg gfz kwxw  Skip to content

SoftWave Provider? Click here to learn more about SoftWaveClinics.com


Shockwave therapy differentially stimulates endothelial cells: implications on the control of inflammation via toll-like receptor 3

Shockwave therapy differentially stimulates endothelial cells: implications on the control of inflammation via toll-like receptor 3


Abstract—Shock wave therapy (SWT) reportedly improves ventricular function in ischemic heart failure. Angiogenesis and inflammation modulatory effects were described. However, the mechanism remains largely unknown. We hypothesized that SWT modulates inflammation via toll-like receptor 3 (TLR3) through the release of cytosolic RNA. SWT was applied to human umbilical vein endothelial cells (HUVECs) with 250 impulses, 0.08 mJ/mm2 and 3 Hz. Gene expression of TLR3, inflammatory genes and signalling molecules was analysed at different time points by real-time polymerase chain reaction. SWT showed activation of HUVECs: enhanced expression of TLR3 and of the transporter protein for nucleic acids cyclophilin B, of pro-inflammatory cytokines cyclophilin A and interleukin-6 and of anti-inflammatory interleukin-10. No changes were found in the expression of vascular endothelial cell adhesion molecule. SWT modulates inflammation via the TLR3 pathway. The interaction between interleukin (IL)-6 and IL-10 in TLR3 stimulation can be schematically seen as a three-phase regulation over time.

INTRODUCTION

Inflammatory processes play an important role in
post-infarction myocardial remodelling. Adequate repair
after loss of a large amount of cardiomyocytes requires a
balanced response between inflammatory and regenerative stimuli [1]. Pro-inflammatory response is needed to
replace ischemically harmed necrotic tissue. Anti-inflammatory processes are required for limitation of inflammation and initiation of repair. Balanced inflammatory
response therefore is prerequisite in myocardial ischemia
to enable regeneration and angiogenesis [1].
Shock wave therapy (SWT) has been developed as a
standard of care or alternative treatment for a variety of
orthopaedic and soft tissue diseases, including ischemic
heart disease [2–6]. SWT was described to induce
suppression of the pro-inflammatory response in severe
cutaneous burn injuries in mice by potently attenuating
acute pro-inflammatory cytokine expression and extracellular matrix proteolytic activity at the wound margin [7].
Cardiac shock wave therapy has been repeatedly
described to improve left ventricular function in ischemic
heart disease [3, 8, 9]. This effect may largely be due to
the induction of angiogenesis [10]. In chronic myocardial
ischemia in rats, our group showed ameliorated heart
function and lower serum levels of BNP after direct epicardial SWT [11]. These beneficial findings could be
reproduced in a large animal model in pigs (unpublished
data). However, the mechanism of how the mechanical
stimulus of shock waves is translated into a biological
response remains unknown [12]. It was suggested that
SWT leads to an increase of cell membrane permeability[13]. Thereby, it could cause the release of cytosolic RNA.
In the present experiments, we therefore hypothesized that
SWT may modulate inflammation via stimulation of tolllike receptor 3 (TLR3). TLR3 is part of the innate immune
system and involved in the recognition of double-stranded
RNA (dsRNA) and fragmented deoxyribonucleic acid
(DNA) from viruses [14, 15]. It therefore could be able to
detect released cytosolic RNA from neighbouring cells.
TLR3 activation is characterized by an early pro-inflammatory phase and a late anti-inflammatory response. This
balancing may create the environment for angiogenesis
and repair in ischemic tissue [16].

RNA Isolation and PCR
RNAwas isolated from homogenized HUVECs using
TriReagent solution (Sigma-Aldrich, USA) according to
the manufacturer’s protocol. cDNA was synthesized using
iScript cDNA Synthesis Kit (Bio-Rad Laboratories, USA).
Real-time polymerase chain reaction (PCR) was performed using the StepOnePlus Real-Time PCR (Applied Biosystems, USA) and the following oligonucleotides: huCYPA forward (forw.) GGCCAGGCTCGTGCCG TTTT, reverse (rev.) AAAGGAGACGCGGCCCAAGG; huCYPB forw. AGCTGTCCGGGCTGCTTTCG, rev. CTCATCGGCCGCAGAAGGTCC; huTLR3 forw.
ATGCTCCGAAGGGTGGCCC, rev. TGGGACCACCA
GGGTTTGCG; huIL-6 forw. ACCCCCAGGAGAAGA
TTCCA, rev. CAATTGCTTCTGAAGAGGTGAGT;
huIL-10 forw. GAGGCTACGGCGCTGTCAT, rev.
CCAGAGCCCCAGATCCGA; huVCAM-1 forw.
GCGAGGGTCTACCAGCTCCA, rev. ATCCGGGGT
CCAGGGGAGAT; and hu Tie-2 forw. CCAGCCCTGCT
GATACCAAA, rev. ATGTGCATGAGGTCCCAAGG.
Briefly, after a denaturation step at 95 °C for 10 min, the
cycling started. Annealing was performed at 60 °C for 10 s,
followed by a synthesis step at 72 °C for 25 s. SYBR Green
fluorescence was detected at 78 °C. After 40 cycles, the
experiment was finished by running a melting curve with
an augmentation of 0.3 to 95 °C followed by fluorescence
detection at the end of each augmentation step. The melting
curve was used to determine the specificity of the primer
pairs [18]. PCRs were performed in duplicate.

Fig. 1. TLR3 agonist Poly(I:C) stimulates TLR3 on HUVECs. A concentration of 200 μg ml culture medium of Poly(I:C) was used to asses time-dependent stimulation of TLR3 showing an early and highly significant effect after 2 h. This confirms that TLR3 on endothelial cells can be activated by double-stranded RNA and serves as a positive control to shock wave stimulation in the treatment groups. ***p<0.001.

Statistical Analysis
Statistical analysis was performed with GraphPad Prism® 5.02 software (GraphPad Software, Inc., San Diego, CA). Results are expressed as means ± standard error of the mean. Controls were set to 100, and treatment groups are given as percent of control. Statistical significance was calculated using one-way ANOVA followed by appropriate post hoc tests to confirm significance. Statistical significance was set to p<0.05.

Shock Wave Treatment
The electrohydraulic DermaGold® SWT therapy
system and the used applicator CG050-P (both TRT
LLC, Woodstock, USA produced by MTS Europe GmbH, Konstanz, Germany) were developed for the extracorporeal use of skin lesions. To apply shock waves properly to
the cells, the culture flasks were dunked into a water bath.
This water bath was built to enable further propagation of
shock waves after passing the cell culture as waves would
otherwise be reflected at the culture medium to ambient air
transition. Reflected waves then would disturb the upcoming ones. In addition, a V-shaped absorber was placed at
the back of the bath. The temperature of the water was
constantly held at 37 °C using a heater triggered by a
temperature sensor. Referring to our experience in animal models as well as to published data for skin lesions, we used 0.08 mJ/mm2 energy flux density and applied 25 impulses/cm2 cell culture flask in a frequency of 3 Hz (pulses per second).

MATERIALS AND METHODS
Cell culture
After obtaining written informed consent of patients,
umbilical cords were obtained from Caesarean section at the
Department of Gynaecology for isolation of human umbilical vein endothelial cells (HUVECs). Permission was given
from the ethics committee of Innsbruck Medical University
(no. UN4435). Isolation was performed as described
previously [17]. Freshly isolated HUVECs were cultivated
in endothelial cell basal medium (CC-3156, Lonza,
Walkersville, USA) supplemented with EGM-2 SingleQuots
supplements (CC-4176, Lonza). Cells (4×105) were
suspended per T25 flask 12 h before treatment. Cells used
in these experiments all were in passage 5. Two culture flasks
were used for each group. Cells were harvested 2, 4 and 6 h
after SWT. The structural analogue to double-stranded RNA
polyinosinic:polycytidylic acid (Poly (I:C) HMW,
InvivoGen, San Diego, CA) in a concentration of 200 μg/
ml served as a positive control for TLR-3 activation in
HUVECs.

RESULTS
TLR3 Agonist Poly(I:C) Stimulates TLR3 on HUVECs
Polyinosinic:polycytidylic acid (Poly (I:C)) serves as a synthetic, structural analogue to dsRNA. A concentration of 200 μg ml culture medium was used to asses time-dependent stimulation of TLR3 showing an early and highly significant effect after 2 h lasting for 6 h (agonist group 237.7±14.1 (2 h); 231.9±14.1 (4 h); 272.4 ±4.7 (6 h) vs. control, p<0.001) (Fig. 1). This confirms that TLR3 on endothelial cells can be activated by dsRNA and represents a positive control to shock wave stimulation for this experiment.

Cellular Uptake of Nucleic Acids and TLR3 Stimulation After SWT Cyclophilin B (CYP B) is responsible for the uptake of nucleic acids into cells. In the cytosol, it can bind to the TLR3 receptors, which are located on endosomes. Treated cells showed an immediate up-regulation of CYP B after SWT (SWT 597.39±59.84 (2 h), p<0.001; 527.84±68.16 (4 h), p<0.001; 424.73±67.13 (6 h), p< 0.01 vs. control) (Fig. 2a). An increased amount of the transporter protein CYP B is necessary to accomplish the cellular uptake of nucleic acids. CYP B expression decreases again as indicated after 6 h representing the depletion of the uptake process. In line with CYP B up-regulation, the expression of TLR3 mRNA was found to be significantly increased after SWT. As TLR3 up-regulates its expression by an auto-loop, after 6 h, the difference between untreated controls and therapy group was even more significant (SWT 123.78± 6.56 (2 h), p>0.05; 165.68±10.61 (4 h), p<0.05; 328.15± 19.33 (6 h), p<0.001 vs. control) (Fig. 2b).

Cellular Uptake of Nucleic Acids and TLR3 Stimulation After SWT

Cyclophilin B (CYP B) is responsible for the uptake of nucleic acids into cells. In the cytosol, it can bind to the TLR3 receptors, which are located on endosomes. Treated cells showed an immediate up-regulation of CYP B after SWT (SWT 597.39±59.84 (2 h), p<0.001; 527.84±68.16 (4 h), p<0.001; 424.73±67.13 (6 h), p< 0.01 vs. control) (Fig. 2a). An increased amount of the transporter protein CYP B is necessary to accomplish the cellular uptake of nucleic acids. CYP B expression decreases again as indicated after 6 h representing the depletion of the uptake process. In line with CYP B up-regulation, the expression of TLR3 mRNA was found to be significantly increased after SWT. As TLR3 up-regulates its expression by an auto-loop, after 6 h, the difference between untreated controls and therapy group was even more significant (SWT 123.78± 6.56 (2 h), p>0.05; 165.68±10.61 (4 h), p<0.05; 328.15± 19.33 (6 h), p<0.001 vs. control) (Fig. 2b).

Initiation Phase: Pro-Inflammatory Response Mediated by Cyclophilin A and Interleukin 6
The TLR3 pathway is characterized by an early proinflammatory response mainly of interleukin 6 (initiation
phase). It is mediated by cyclophilin A (CYP A), which
further promotes the production of the pro-inflammatory cytokine interleukin 6 [19]. Interleukin (IL)-6 itself serves as a chemoattractant to monocytes. Thereby, they get directed to the site of inflammation. In our experiment, we could find an up-regulation of CYP A (SWT 92.98±7.44 (2 h), p>0.05; 159.75±10.43 (4 h), p<0.01; 244.35±17.05 (6 h), p<0.001 vs. control) as well as of IL-6 (SWT 164.3± 25.19 (2 h), p>0.05; 182.2±17.06 (4 h), p<0.05; 180.23± 11.4 (6 h), p<0.01 vs. control) after SWT indicating the activation of an early pro-inflammatory response of the TLR3 pathway in the initiation phase (Fig. 3a, b).

Fig. 2. Cellular uptake of nucleic acids and TLR3 stimulation after SWT. a Cyclophilin B shows an early response to SWT that indicates nucleic acid uptake to the cells. b In line with an increase of cyclophilin B expression, TLR3 increases over time reaching its peak after 6 h. *p<0.05, **p<0.01, ***p<0.001.

Middle Phase: Suppression of Inflammation
Vascular cell adhesion molecule (VCAM) is a
surface protein responsible for the mediation of leucocyte
adhesion and is therefore an indicator for prolonged
inflammation [20]. Although pro-inflammatory cytokine
IL-6 is increased, VCAM is not up-regulated in treated
cells compared to untreated controls (SWT 119.31±17.23 (2 h), p>0.05; 102.63±7.17 (4 h), p>0.05; 111.78±3.33
(6 h), p>0.05 vs. control) (Fig. 4a). This fact indicates that
IL-6 may not cause inflammation in treated tissue after
SWT. We therefore hypothesize that it rather serves as a
chemoattractant to monocytes. Thereby, it reveals the
modulation of TLR3-mediated inflammatory response
that results in a middle phase with beginning suppression
of inflammation.

Tyrosine kinase with immunoglobulin-like and EGF-like domains 2 (Tie2) represents a protein, which is expressed on endothelial cells only. Up-regulated Tie2 mRNA shows significantly enhanced proliferation in endothelial cells after SWT (SWT 154.25±16.39 (2 h), p<0.05; 137.23±8.52 (4 h), p<0.05; 166.68±2.15 (6 h), p<0.01 vs. control) (Fig. 4b). This finding shows that endothelial cells are in a physiologic condition and it therefore further supports the hypothesis of a balanced inflammatory response. It is in line with the nonsignifi

Fig. 3. Initiation phase: early pro-inflammatory response. a Cyclophilin A that serves as a mediator for IL-6 is steadily increasing after SWT thereby further promoting the already increased IL-6 expression. b The initiation phase is marked by the pro-inflammatory cytokine IL-6 that shows an early increase directly after SWT. *p<0.05, **p<0.01, ***p<0.001.

Limitation Phase: Late Anti-Inflammatory Effect Mediated by IL-10

TLR3 response is characterized by the late production of IL-10 marking an anti-inflammatory limitation phase. The expression of anti-inflammatory cytokine IL10 was significantly enhanced after SWT (SWT 460.9± 43.72 (2 h), p<0.05; 410.83±95.55 (4 h), p<0.05; 595.88 ±66.66 (6 h), p<0.01 vs. control) (Fig. 5). It seems to be responsible for limitation of the inflammatory regulation thereby creating the environment for tissue repair.

cant expression of VCAM at all time points. Moreover,
the suppression of inflammation may be indicated by Tie2
expression being slightly higher at later time points.

Fig. 4. Middle phase: suppression of inflammation. a No up-regulation of VCAM could be observed. This indicates no prolonged inflammation, but IL-6 in the initiation phase being rather up-regulated for monocyte recruitment than tissue inflammation. b Up-regulated Tie2 mRNA indicates enhanced proliferation in treated endothelial cells compared to untreated controls. The up-regulation of Tie2 being higher at later time points clearly marks the middle phase of suppression of the inflammatory response. *p<0.05, **p<0.01.

DISCUSSION
Low-energy shock wave treatment is well known to induce tissue regeneration and angiogenesis in ischemic myocardium. It has been proven in numerous animal models as well as in human pilot trials [4, 8–11]. Nevertheless, the underlying mechanism remains largely unknown. Modulation of inflammation is prerequisite for regeneration and angiogenesis as shown in a burn injury model in mice in which SWT potently attenuates cytokine expression at the wound margin [7]. In the present in vitro experiments, we hypothesized that SWT may modulate inflammation via stimulation of TLR3. TLR3 is part of the innate immune system and involved in the recognition of dsRNA and fragmented DNA from viruses [14, 15]. TLR3 activation is characterized by an early pro inflammatory and a late antiinflammatory response. This balancing creates an environment for repair and angiogenesis in ischemic tissue [16].

We first proved that TLR3 activation on endothelial cells is possible by using the TLR3 agonist
polyinosinic:polycytidylic acid (Poly(I:C)). Then, we
exposed the cells to low-energy SWT and performed
analysis of the main inflammatory cytokines. Thereby, we
show that the complex interaction between the two main
cytokines IL-6 and IL-10 after TLR3 stimulation can be
schematically seen as a three-phase regulation over time
(Fig. 6). The different phases are of course overlapping.
After an early pro-inflammatory initiation phase mediated
by IL-6, a middle phase with beginning suppression of
inflammation can be seen. It finally results in a late antiinflammatory limitation phase of IL-10.

Fig. 5. Limitation phase: late anti-inflammatory effect. TLR3 response is characterized by the late production of IL-10 marking an anti-inflammatory limitation phase and thereby creating an environment for regeneration and repair. *p<0.05, **p<0.01.

Preclinical studies show beneficial effects of antiinflammatory treatment after myocardial infarction by
decreasing the infarct size-to-area-at-risk ratio [21, 22].
However, these studies remain experimental as none of
them have been translated into clinic. Therefore, a safe
treatment option that modulates the inflammatory response
after myocardial infarction is of high therapeutic interest.
The results of our present study suggest that the
tissue regenerative effect of shock wave therapy is at least
in part mediated by TLR3 stimulation.
Nevertheless, further experiments are needed and a
trial with TLR3 knockout mice is on its way to reproduce
our current findings in vivo and prove the hypothesis.
In conclusion, we for the first time show that the effects
of myocardial regeneration by low-energy shock wave
treatment are at least in part by creating an environment for
regeneration and angiogenesis through modulating inflammation via toll-like receptor 3 stimulation.

ACKNOWLEDGMENTS


This work was in part funded by a research grant
from Bayer Pharma AG (Grants4Targets) to P.P. and by
Medizinischer Forschungsfonds Tirol (MFF) project no.
220 to J.H. The sponsors of this study had no role in study
design, data collection, analysis, and decision to publish
or prepare the manuscript nor have any financial interest.
Conflicts of interest. None

Fig. 6. TLR3 stimulation leads to three phases of inflammatory modulation. The complex interaction between the two main cytokines IL-6 and IL-10 in
TLR3 stimulation can be schematically seen as a three-phase regulation over time. After an early pro-inflammatory initiation phase mediated by IL-6, a
middle phase showing suppression of inflammation can be seen before the late anti-inflammatory limitation phase of IL-10 results. This modulation of the
inflammatory response is prerequisite for angiogenesis and repair in ischemic tissue.

REFERENCES

  1. Nahrendorf, M., M.J. Pittet, and F.K. Swirski. 2010. Monocytes:
    protagonists of infarct inflammation and repair after myocardial
    infarction. Circulation 121(22): 2437–2445.
  2. Haupt, G., A. Haupt, A. Ekkernkamp, B. Gerety, and M. Chvapil. 1992.
    Influence of shock waves on fracture healing. Urology 39: 529–532.
  3. Chen, Y.J., C.J. Wang, K.D. Yang, Y.R. Kuo, H.C. Huang, Y.T. Huang,
    Y.C. Sun, and F.S. Wang. 2004. Extracorporeal shock waves promote
    healing of collagenase-induced Achilles tendinitis and increase TGF-beta1
    and IGF-I expression. Journal of Orthopaedic Research 22: 854–861.
  4. Fukumoto, Y., A. Ito, T. Uwatoku, T. Matoba, T. Kishi, H. Tanaka, A.
    Takeshita, K. Sunagawa, and H. Shimokawa. 2006. Extracorporeal
    cardiac shock wave therapy ameliorates myocardial ischemia in patients
    with severe coronary artery disease. Coronary Artery Disease 17: 63–70.
  5. Wang, C.J., K.D. Yang, F.S. Wang, C.C. Hsu, and H.H. Chen. 2004.
    Shock wave treatment shows dose-dependent enhancement of bone
    mass and bone strength after fracture of the femur. Bone 34: 225–230.
  6. Schaden, W., R. Thiele, C. Kolpl, M. Pusch, A. Nissan, C.E. Attinger,
    M.E. Maniscalco-Theberge, G.E. Peoples, E.A. Elster, and A. Stojadinovic. 2007. Shock wave therapy for acute and chronic soft tissue wounds: a feasibility study. Journal of Surgical Research 143: 1–12.
  1. Davis, T.A., A. Stojadinovic, K. Anam, M. Amare, S. Naik, G.E.
    Peoples, D. Tadaki, and E.A. Elster. 2009. Extracorporeal shock wave
    therapy suppresses the early proinflammatory immune response to a
    severe cutaneous burn injury. International Wound Journal 6(1): 11.
  2. Wang, Y., T. Guo, H.Y. Cai, T.K. Ma, S.M. Tao, S. Sun, et al. 2010.
    Cardiac shock wave therapy reduces angina and improves myocardial function in patients with refractory coronary artery disease.
    Clinical Cardiology 33(11): 693–699.
  3. Zuozienė, G., A. Laucevičius, and D. Leibowitz. 2012. Extracorporeal shockwave myocardial revascularization improves clinical
    symptoms and left ventricular function in patients with refractory
    angina. Coronary Artery Disease 23(1): 62–67.
  4. Tepeköylü, C., FS. Wang, R. Kozaryn, K. Albrecht-Schgoer, M.
    Theurl, W. Schaden, HJ. Ke, Y. Yang, R. Kirchmair, M. Grimm, CJ.
    Wang, and J. Holfeld. 2013. Shock wave treatment induces
    angiogenesis and mobilizes endogenous CD31/CD34-positive endothelial cells in a hindlimb ischemia model: implications for angiogenesis and vasculogenesis. The Journal of Thoracic and Cardiovascular
    Surgery. doi:10.1016/j.jtcvs.2013.01.017.

REFERENCES

  1. Zimpfer, D., S. Aharinejad, J. Holfeld, A. Thomas, J. Dumfarth, R.
    Rosenhek, M. Czerny, W. Schaden, M. Gmeiner, E. Wolner, and M.
    Grimm. 2009. Direct epicardial shock wave therapy improves
    ventricular function and induces angiogenesis in ischemic heart
    failure. The Journal of Thoracic and Cardiovascular Surgery
    137(4): 963–970.
  2. Kuo, Y.R., C.T. Wang, F.S. Wang, K.D. Yang, Y.C. Chiang, and C.J.
    Wang. 2009. Extracorporeal shock wave treatment modulates skin
    fibroblast recruitment and leukocyte infiltration for enhancing extended
    skin-flap survival. Wound Repair and Regeneration 17(1): 80–87.
  3. Martini, L., G. Giavaresi, M. Fini, P. Torricelli, V. Borsari, R.
    Giardino, M. De Pretto, D. Remondini, and G.C. Castellani. 2005.
    Shock wave therapy as an innovative technology in skeletal disorders:
    study on transmembrane current in stimulated osteoblast-like cells.
    The International Journal of Artificial Organs 28(8): 841–847.
  4. Alexopoulou, L., A.C. Holt, R. Medzhitov, and R.A. Flavell. 2001.
    Recognition of double-stranded RNA and activation of NF-kappaB
    by Toll-like receptor 3. Nature 413(6857): 732–738.
  5. Takeda K, Akira S. Toll-like receptors. Curr Protoc Immunol. 2007
    May; Chapter 14: Unit 14.12.
  6. Chi, H., S.P. Barry, R.J. Roth, J.J. Wu, E.A. Jones, A.M. Bennett,
    and R.A. Flavell. 2006. Dynamic regulation of pro- and antiinflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate
    immune responses. Proc Natl Acad Sci USA 103(7): 2274–2279.
  7. Siow, R.C. 2012. Culture of human endothelial cells from umbilical
    veins. Methods in Molecular Biology 806: 265–274.
  8. Paulus, P., E.R. Stanley, R. Schäfer, D. Abraham, and S. Aharinejad. 2006.
    Colony-stimulating factor-1 antibody reverses chemoresistance in human
    MCF-7 breast cancer xenografts. Cancer Research 66(8): 4349–4356.
  9. Payeli, S.K., C. Schiene-Fischer, J. Steffel, G.G. Camici, I.
    Rozenberg, T.F. Lüscher, and F.C. Tanner. 2008. Cyclophilin A
    differentially activates monocytes and endothelial cells: role of
    purity, activity, and endotoxin contamination in commercial
    preparations. Atherosclerosis 197(2): 564–571.
  10. Ross, E.A., M.R. Douglas, S.H. Wong, E.J. Ross, S.J. Curnow, G.B.
    Nash, E. Rainger, D. Scheel-Toellner, J.M. Lord, M. Salmon, and
    C.D. Buckley. 2006. Interaction between integrin alpha9beta1 and
    vascular cell adhesion molecule-1 (VCAM-1) inhibits neutrophil
    apoptosis. Blood 107(3): 1178–1183.
  11. Frangogiannis, N.G., C.W. Smith, and M.L. Entman. 2002. The
    inflammatory response in myocardial infarction. Cardiovascular
    Research 53: 31–47.
  12. Steffens, S., F. Montecucco, and F. Mach. 2009. The inflammatory
    response as a target to reduce myocardial ischaemia and reperfusion
    injury. Thrombosis and Haemostasis 102: 240–247.

 

Johannes Holfeld,1 Can Tepeköylü,1 Radoslaw Kozaryn,1
Anja Urbschat,2 Kai Zacharowski,3 Michael Grimm,1 and Patrick Paulus3,4

Click to read more.